This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

A NOVEL PRISMANE CLUSTER. SYNTHESIS AND CRYSTAL STRUCTURE OF A DIMER OF [(TRIPHENYLPHOSPHINE) COPPER(2-PICOLINE)COPPER] OXOTRITHIOMOLYBDENUM, $[Cu_{A}Mo_{2}S_{2}][(C_{A}H_{2})_{2}P],(C_{2}H_{2}N)_{2}O_{2}O_{2}H_{2}N$

Yu Liu^a; Xin-Quan Xin^a; Wing-Tak Wong^b ^a State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, P.R. China ^b Department of Chemistry, The University of Hong Kong, Hong Kong

To cite this Article Liu, Yu , Xin, Xin-Quan and Wong, Wing-Tak(1998) 'A NOVEL PRISMANE CLUSTER. SYNTHESIS AND CRYSTAL STRUCTURE OF A DIMER OF [(TRIPHENYLPHOSPHINE) COPPER(2-PICOLINE)COPPER] OXOTRITHIOMOLYBDENUM, $[Cu_4Mo_2S_6][(C_6H_5)_3P]_2(C_6H_7N)_2O_2 \cdot 2C_6H_7N'$, Journal of Coordination Chemistry, 46: 1, 43 – 49

To link to this Article: DOI: 10.1080/00958979808047193 URL: http://dx.doi.org/10.1080/00958979808047193

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1998, Vol. 46, pp. 43–49 Reprints available directly from the publisher Photocopying permitted by license only

© 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint. Printed in Malavsia.

A NOVEL PRISMANE CLUSTER. SYNTHESIS AND CRYSTAL STRUCTURE OF A DIMER OF [(TRIPHENYLPHOSPHINE) COPPER(2-PICOLINE)COPPER] OXOTRITHIOMOLYBDENUM, [Cu₄Mo₂S₆]](C₆H₅)₃P]₂(C₆H₇N)₂O₂ · 2C₆H₇N

YU LIU^a, XIN-QUAN XIN^{a,*} and WING-TAK WONG^{b,*}

^a State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P.R. China; ^b Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

(Received 5 February 1997)

The prismane cluster $[Cu_4Mo_2S_6][(C_6H_5)_3P]_2(C_6H_7N)_2O_2 \cdot 2C_6H_7N$ has been prepared by the reaction of $[NH_4]_2MoO_2S_2$ with CuBr and PPh₃ in 2-picoline. Its molecular structure was determined by single-crystal X-ray analysis. The compound crystallizes in the monoclinic space group $P_{2_1/n}$ with a = 12.149(2), b = 17.152(2), c = 15.793(2)Å, $\beta = 105.40(2)^\circ$, and Z = 2. The X-ray structure (R; $R_w = 0.046$; 0.048) revealed a 12-atom Cu_4Mo_2S_6 prismane which can be envisaged as consisting of two MoOS₃ units connected on adjacent edges by two different groups, $[C_6H_7NCu]$ and $[(C_6H_5)_3PCu]$.

Keywords: Mo-Cu-S cluster; prismane cluster; synthesis; X-ray structure

INTRODUCTION

In the last two decades, molybdenum-sulfur clusters have been extensively studied because of their relevance to biological fixation of nitrogen¹ and catalytic processes.² Recently, Mo(W)-S-Cu(Ag) clusters have shown promise as non-linear optical (NLO) materials,³ and prismane clusters are of great interest in regard to their excellent NLO properties.⁴ Up to now,

^{*} Corresponding authors.

only six prismane clusters have been structurally reported, $[(C_7H_7)_3P]_4$ -Cu₄W₂O₂S₆,^{5a} [Cu₄W₂S₆](PPh₃)₄O₂,^{5e} (PPh₃)₄Ag₄W₂S₈,^{5b} (PPh₃)₄Ag₄. Mo₂S₈,^{5c} [(C₆H₅)₂PCH₃]₄Ag₄W₂S₈,^{5d} and (Ph₃As)₄Ag₄W₂S₈.^{4b} Among these reported prismane clusters, no Mo-Cu-S analogue has been structurally characterized. This paper describes the synthesis and structure of a novel bimetallic sulfur cluster (PPh₃)₂(C₆H₇N)₂Cu₄Mo₂S₆O₂ · 2C₆H₇N (I), in which two different moieties, {Ph₃PCu} and {C₆H₇NCu}, bridge MoOS₃ units. It is the first mixed-ligand prismane cluster as well as the first involving the coordination of an N atom.

EXPERIMENTAL

 $[NH_4]_2Mo_2O_2$ was prepared according to the method⁶ reported. All the other reagents were of AR grade, and used without further purification.

Preparation of [Cu₄Mo₂S₆](PPh₃)₂(C₆H₇N)₂O₂ · 2C₆H₇N (I)

A mixture of $0.22 \text{ g} [\text{NH}_4]_2 \text{MoO}_2 \text{S}_2$ (1 mmol), 0.43 g CuBr (3 mmol) and 0.79 g PPh₃ (3 mmol) was stirred in 2-picoline (9 cm³) for about 8 h. The reaction mixture was filtered and allowed to stand in air at room temperature. After 5–6 days, black crystals of the title compound (0.22 g, yield 28%) and red crystals of MoOS₃Cu₃(PPh₃)₃Br (yield *ca* 10%) were obtained, and which were separated mechanically. *Anal.* Calcd. for Mo₂Cu₄S₆O₂N₄C₆₀P₂H₅₈ (%): C, 45.97; H, 3.73; N, 3.57. Found: C, 46.06; H, 3.70; N, 3.42.

X-ray Structure Determination

A suitable crystal of the title compound for X-ray analysis was mounted on a glass fibre using epoxy resin. Crystal and refinement data are summarized in Table I. Intensity data were collected at room temperature on an Enraf-Nonius CAD4 diffractometer with graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å) using the ω -2 θ scan method. The stability of the crystal was monitored at regular intervals using three standard reflections and no significant variation was observed. Intensity data was corrected for Lorentz and polarization effects and semi-empirical absorption corrections (ψ -scan method) were also applied.⁷ The structure was solved by a combination of direct methods (SIR88)⁸ and difference Fourier techniques and refined on F by full-matrix least-squares analysis. The hydrogen atoms of the organic

Empirical formula	MO2CUASCO2NAC60P2H58
Formular weight	1567.52
Crystal dimensions (mm)	$0.30 \times 0.32 \times 0.35$
Crystal system	monoclinic
Space group	$P2_1/n$
Unit cell parameters	-,
a (Å)	12.149(2)
$b(\mathbf{\dot{A}})$	17.152(2)
c (Å)	15.793(2)
β (°)	105.40(2)
$V(\dot{A}^3)$	3172.8(8)
Z	2
$\mu (\mathrm{cm}^{-1})$	19.91
F(000)	1576.00
20max (°)	44.9
$d_c (\mathrm{gcm}^{-1})$	1.641
Temperature (K)	296.0
Diffractometer	Enraf-Nonius CAD4
Radiation	$MoK\alpha \ (\lambda = 0.71069 \text{\AA})$
Scan type	ω-2θ
Scan width (°)	$0.70+0.35\tan\theta$
Solution method	Direct Methods (SIR88)
Correction	Lorentz-polarization, Adsorption
No. of observations with $I > 3$ ($\sigma(I)$)	2753
Residuals: R, R_w	0.046; 0.048; $w = \sigma^2 (F_o)^{-1}$
Goodness of fit: S	1.98
Max. shift in final cycle	0.19
No. of variables	201
Max./Min. peaks in final diff. map (e-/Å ³)	0.60/-0.54

TABLE I Crystallographic data for the complex

moieties were placed in their idealized positions (C-H, 0.95 Å). All calculations were performed on a Silicon Graphics computer using the program package teXsan⁹ from the Molecular Structure Corporation. Final atomic positions are listed in Table II, and bond lengths and angles in Tables III and IV.

RESULTS AND DISCUSSION

There are two $(PPh_3)_2(C_6H_7N)_2Cu_4Mo_2S_6O_2 \cdot 2C_6H_7N$ molecules per unit cell. The crystal structure reveals a discrete 12-atom $Mo_2S_6Cu_4$ prismane (Figure 1). Each Mo atom is bonded to a terminal oxygen atom, while the four Cu atoms are equally divided into two types. One is additionally bonded to PPh₃ and the other to a 2-picoline ligand. Four 2-picoline solvent molecules are distributed in every unit cell.

A centre of symmetry lies within the molecule. Therefore, each molecule can be regarded as a dimer fused by two identical $(Ph_3P)CuMo-OS_3Cu(NC_6H_7)$ moieties. The asterisked atoms are related to the

- 72-2 0 7- 7					
atom	x/a	y/b	z/c	$B_{eq}^{*}(\text{\AA}^{2})$	
Mo(1)	0.094391(7)	0.08845(4)	0.09542(5)	3.09(2)	
Cu(1)	0.86143(10)	-0.05779(7)	0.06171(8)	3.76(3)	
Cu(2)	1.15891(9)	0.03047(7)	0.11767(7)	3.52(3)	
S(1)	1.0168(2)	-0.0206(1)	0.1699(1)	3.56(6)	
S(2)	1.0806(2)	0.1416(1)	0.0436(2)	3.50(6)	
S(3)	0.7908(2)	0.0553(1)	-0.0125(2)	3.44(6)	
O(1)	0.9051(6)	0.1520(4)	0.1635(4)	4.9(2)	
P(1)	1.3199(2)	0.0557(1)	0.2234(2)	3.15(6)	
N(1)	0.7415(6)	-0.1169(4)	0.1036(5)	3.9(2)	
C(1)	1.2951(7)	0.1261(5)	0.3034(5)	3.2(2)	
C(2)	1.2074(9)	0.1132(6)	0.3389(7)	5.4(2)	
C(3)	1.182(1)	0.1671(7)	0.3993(8)	6.7(3)	
C(4)	1.2494(9)	0.2324(6)	0.4211(7)	4.9(2)	
C(5)	1.3350(10)	0.2450(6)	0.3862(7)	5.5(2)	
C(6)	1.3601(8)	0.1934(6)	0.3265(6)	4.4(2)	
C(19)	0.6372(9)	-0.0843(6)	0.0879(7)	5.0(2)	
C(20)	0.551(1)	-0.1168(8)	0.1189(8)	7.0(3)	
C(21)	0.573(1)	-0.1819(8)	0.1670(9)	7.7(3)	
C(22)	0.675(1)	-0.2160(8)	0.1838(9)	7.8(3)	
C(23)	0.7605(10)	-0.1815(7)	0.1505(7)	5.7(3)	
C(24)	0.874(Ì)	-0.2189(9)	0.1650(9)	8.9(4)	

TABLE II Atomic Coordinates and B_{eq} values for $[Cu_4Mo_2S_6][(C_6H_5)_3P]_2(C_6H_7-N)_2O_2 \cdot 2C_6H_7N$

 $\overline{{}^{*}B_{eq}} = (8\pi^{2}/3)[U_{11}(aa^{*})^{2} + U_{22}(bb^{*})^{2} + U_{33}(cc^{*})^{2} + 2U_{12}aa^{*}bb^{*}\cos\gamma + 2U_{13}aa^{*}cc^{*}\cos\beta + 2U_{23}bb^{*}cc^{*}\cos\alpha].$

TABLE III Selected bond distances for [Cu₄Mo₂S₆](PPh₃)₂(C₆H₇N)₂O₂ · 2C₆H₇N (Å)

Mo(1)-S(1)	2.261(3)	Mo(1)-S(2)	2.232(3)
Mo(1)-S(3)	2.237(2)	Mo(1)-O(1)	1.684(6)
Mo(1)-Cu(1)	2.701(1)	Mo(1)-Cu(2)	2.729(1)
Cu(1)-S(1)	2.275(3)	Cu(1)-S(2*)	2.440(3)
Cu(1)-S(3)	2.310(3)	Cu(1)-N(1)	2.024(8)
Cu(2)-S(1)	2.277(3)	Cu(2)-S(2)	2.306(3)
Cu(2)-S(3*)	2.415(3)	Cu(2)-P(1)	2.251(3)
.,	.,		

TABLE IV Selected bond angles for [Cu₄Mo₂S₆](PPh₃)₂(C₆H₇N)₂O₂ · 2C₆H₇N (°)

S(1)-Mo(1)-S(2)	107.56(9)	S(2)-Mo(1)-S(3)	111.93(9)
S(1)-Mo(1)-S(3)	108.52(9)	S(2)-Mo(1)-O(2)	109.4(2)
S(1)-Mo(1)-O(1)	109.9(2)	S(3)-Mo(1)-O(1)	109.5(2)
S(1)-Cu-S(2*)	110.19(10)	S(1)-Cu(1)-S(3)	105.53(10)
S(2*)-Cu(1)-S(3)	106.51(9)	S(1)-Cu(1)-N(1)	114.9(2)
$S(2^*)-Cu(1)-N(1)$	106.9(2)	S(3)-Cu(1)-N(1)	112.6(2)
S(1)-Cu(2)-S(2)	104.56(9)	S(1)-Cu(2)-S(3*)	111.68(9)
S(2)-Cu(2)-S(3*)	107.47(9)	S(1)-Cu(2)-P(1)	113.47(10)
S(2)-Cu(2)-P(1)	112.19(10)	S(3*)-Cu(2)-P(1)	107.37(9)
		· · · · · · · · · · · · · · · · · · ·	

FIGURE 1 ORTEP diagram of [Cu₄Mo₂S₆](PPh₃)₂(C₆H₇N)₂O₂ · 2C₆H₇N.

unasterisked atoms by the symmetry centre. As shown in Table IV, the MoOS₃ group has tetrahedral geometry, with S-Mo-S(O) angles ranging from 107.56(9) to 111.93(9)°. The terminal bond length of 1.684(6) Å (Table III) is characteristic of an Mo = O double bond.

Although the two crystallographically independent copper atoms both adopt tetrahedral geometry, they have very different ligand arrangements as mentioned above. For the {S₃Cu(NC₆H₇)} moiety, S-Cu-S and S-Cu-N angles range from 105.53(10) to 114.9(2)°, with a mean of 109.4°; for {S₃CuPPh₃}, S-Cu-S and S-Cu-P range from 104.56(9) to 113.47(10)°, with a mean of 109.5°. Thus bond angles about copper atoms are closer to the ideal than in [Cu₄W₂S₆][(C₇H₇)₃P]₄O₂^{5a} [102.7(3)-121.2(3)°] and [Cu₄W₂S₆](PPh₃)₄O₂^{5e} [108.49(13)-121.08(13)°].

There are three crystallographically independent four-atom faces in the molecule (Table V). These faces are not strictly planar. The two CuMoS₂ faces have average displacements from the plane of 0.0023 and 0.0045 Å, while for the Cu₂S₂ plane the average displacement is 0.0241 Å.

 $Cu(1)-S(2^*)$ [2.440(3)Å] and $Cu(2)-S(3^*)$ [2.415(3)Å], linking the two symmetrically related parts of the molecule, are longer than the other four

Plane 1		Plane 2		Plane 3	
Atom	Distance (Å)	Atom	Distance (Å)	Atom	Distance (Å)
Mo(1)	-0.0004	Mo(1)	-0.0009	Cu(1*)	0.0086
Cu(1)	0.0009	Cu(2)	-0.0018	Cu(2)	0.0086
S(1)	0.0037	S(1)	0.0077	S(2)	-0.0399
S(3)	0.0039	S(2)	0.0078	S(3*)	-0.0393
	Planes		Dihedral	Angle (°)	
	1 and 2	and 2 58.88			
	2 and 3	59.94 61.18			
	1 and 3				

TABLE V Least-Squares Planes for [Cu₄Mo₂S₆](PPh₃)₂(C₆H₇N)₂O₂ · 2C₆H₇N

Cu-S distances [2.275(3)-2.310(3)Å]. From a chemical point of view, it is more reasonable to consider the prismane as being formed by the dimerization of two (Ph₃P)CuMoOS₃Cu(NC₆H₇) units, rather than two 6-membered MoS₃Cu₂ rings.

As reported by Müller,^{5e} two clusters, $(PPh_3)_4Cu_4W_2S_6O_2$ and $[Cu_3WS_3Cl](PPh_3)_3O$, form in the course of the same reaction. As mentioned in the experimental section, starting from $[NH_4]_2MOO_2S_2$, CuBr, PPh₃ and 2-picoline, $[Cu_3MOS_3Br](PPh_3)_3O$ also forms, accompanied by production of (I). This shows that there might exist a competition between the cubane-like cluster and the prismane cluster. Apparently, in the reaction process, $[MoO_2S_2]^{2-}$ is transformed into $[MoOS_3]^{2-}$. We have no idea how the transformation occurs.

Supplementary Material

Lists of bond lengths and angles, H atom positions, thermal parameters and observed and calculated structure factors are available from the authors.

Acknowledgments

The authors acknowledge financial support by the National Natural Science Foundation of China, the State Education Commission of China, the Hong Kong Research Grants Council and the University of Hong Kong for this work.

References

B.K. Burgess, In Advances in Nitrogen Fixation Research, C. Veeger and W.D. Newton, Eds. (Nijholf-Junk-Pudoc, Wageningen, The Netherlands, 1983), and references therein.

PRISMANE CLUSTERS

- [2] (a) R.R. Chianelli, T.A. Pecoraro, T.R. Halber, W.H. Pan and E.I. Stiefel, J. Catal., 86, 226 (1984); (b) S. Harris and R.R. Chianelli, J. Catal., 86, 400 (1984).
- [3] (a) H.W. Hou, X.Q. Xin and S. Shi, Coord. Chem. Rev., 153, 25 (1996); (b) S. Shi, W. Ji and X.Q. Xin, J. Phys. Chem., 99, 894 (1995); (c) S. Shi, H.W. Hou and X.Q. Xin, J. Phys. Chem., 99, 4050 (1995); (d) S. Shi, Z.R. Chen, H.W. Hou, X.Q. Xin and K.B. Yu, Chem. Mater., 7, 1519 (1995); (e) S. Shi, W. Ji, S.H. Tang, J.P. Lang and X.Q. Xin, J. Am. Chem. Soc., 116, 3615 (1994).
- [4] (a) W. Ji, S. Shi, H.J. Du, P. Ge, S.H. Tang and X.Q. Xin, J. Phys. Chem., 99, 17297 (1995); (b) G. Sakane, T. Shibahara, H.W. Hou, X.Q. Xin and S. Shi, Inorg. Chem., 34, 4785 (1995).
- [5] (a) R. Doherty, C.R. Hubbard, A.D. Mighell, A.R. Siedle and J. Stewart, Inorg. Chem., 18, 2991 (1979); (b) A. Müller, H. Bögge and E. Königer-Ahlborn, J.C.S., Chem. Comm., 739 (1978); (c) A. Müller, H. Bögge, E. Königer-Ahlborn and W. Hellmann, Inorg. Chem., 18, 2301 (1979); (d) J.K. Stalick, A.R. Siedle, A.D. Mighell and C.R. Hubbard, J. Am. Chem. Soc., 101, 2903 (1979); (e) A. Müller, H. Bogge and T.K. Hwang, Inorg. Chim. Acta, 39, 71 (1980).
- [6] J.W. McDonald, G.O. Frieson, C.D. Rosenhein and W.E. Newton, Inorg. Chim. Acta, 72, 205 (1983).
- [7] M.C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Cryst., 22, 389 (1989).
- [8] A.C.T. North, D.C. Phillips and F.S. Mathews, Acta Cryst., A24, 351 (1968).
- [9] TeXsan: Crystal Structure Analysis Package (Molecular Structure Corporation, Texas, 1985 and 1992).
- [10] H.W. Hou, X.Q. Xin, X.Y. Huang, J.H. Cai and B.S. Kang, Chin. Chim. Lett., 6, 91 (1995).
- [11] S. Sarkar and S.B.S. Mishra, Coord. Chem. Rev., 59, 239 (1984), and references therein.
- [12] J.G. Li, X.Q. Xin, Z.Y. Zhou and K.B. Yu, J.C.S., Chem. Commun., 250 (1991).